Skip to content
DELIVERY: Please note, the Christmas deadline has now passed and we can no longer guarantee delivery before 25th December 2025.
DELIVERY: Please note, the Christmas deadline has now passed and we can no longer guarantee delivery before 25th December 2025.

A Multiplicative Tate Spectral Sequence for Compact Lie Group Actions

Alice Hedenlund, John Rognes
Barcode 9781470468781
Paperback

Original price £71.15 - Original price £71.15
Original price
£71.15
£71.15 - £71.15
Current price £71.15

Click here to join our rewards scheme and earn points on this purchase!

Availability:
in stock
FREE shipping

Release Date: 31/05/2024

Genre: Science Nature & Math
Label: American Mathematical Society
Series: Memoirs of the American Mathematical Society
Language: English
Publisher: American Mathematical Society

We construct a multiplicative G-Tate spectral sequence for each R-module X in orthogonal G-spectra, with E2-page given by the Hopf algebra Tate cohomology of R[G]* with coefficients in π*(X).
Given a compact Lie group G and a commutative orthogonal ring spectrum R such that R[G]* = π*(R ? G+) is finitely generated and projective over π*(R), we construct a multiplicative G-Tate spectral sequence for each R-module X in orthogonal G-spectra, with E2-page given by the Hopf algebra Tate cohomology of R[G]* with coefficients in π*(X). Under mild hypotheses, such as X being bounded below and the derived page RE∞ vanishing, this spectral sequence converges strongly to the homotopy π*(XtG) of the G-Tate construction XtG = [EG ? F(EG+, X]G.